Philip Easo: Cutsets and percolation

Abstract:

The classical Peierls argument establishes that percolation on a graph G has a non-trivial (uniformly) percolating phase if G has “not too many small cutsets”. Severo, Tassion, and I have recently proved the converse. Our argument is inspired by an idea from computer science and fits on one page. Our new approach also resolves a conjecture of Babson of Benjamini from 1999 and provides a much simpler proof of the celebrated result of Duminil-Copin, Goswami, Raoufi, Severo, and Yadin that percolation on any transitive graph with superlinear growth undergoes a non-trivial phase transition. This is based on a joint work with Franco Severo and Vincent Tassion.


______________________

Video:

Password Protected

This video is password-protected. Please verify with a password to unlock the content.